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Abstract— This paper presents a novel strategy for using
historical ride data from ride-share electric scooters for path
planning of an autonomous electric scooter. Commonly used
map datasets do not consider the unique ride characteristics
of an electric scooter, and planning over these maps may
suggest a route that is undesirable. By weighting our planning
based on what routes human riders have taken in the past, we
generate a series of waypoints that would allow the scooter to
autonomously navigate to a target destination using an efficient
and reasonable route. Our results show that this method shows
improvement over conventional map-based planners in avoiding
suboptimal or undesirable routes.

I. INTRODUCTION

Demand for electric scooters is increasingly popular as
our society advances towards more efficient and sustained
ways to get around. Cities, residents, and scooter distributors
alike often struggle with quickly adjusting to this increased
demand, often leading to inequities. This demand also leads
to scooters being improperly used, which negatively affects
residents and typical city operations. Additionally, it is com-
mon to see commuters having trouble finding a sufficiently
charged rental scooter nearby when they need it; this process
is especially cumbersome for the mobility impaired [1].
Autonomous navigation for electric scooters can solve both
of these issues. By utilizing autonomous path planning,
electric scooters can navigate to riders when needed and
route themselves to park, charge, or be serviced.

Typically, the autonomous path planning process includes
a global path, which provides long-term directions toward
the goal, and a local path, which considers any structures in
the immediate vicinity of the robot. Traditional methods to
plan a robot’s global path use graph-based search algorithms,
such as A∗ or Dijkstra’s algorithm, over a known map [2, 3].
For outdoor robots, this global map consists of the network
of roads that the robot can traverse, such as OpenStreetMap
[4] or Google Maps. However, for micromobility systems
like the electric scooter, these maps provide insufficient
information about terrain, structures, sidewalk, or trails. For
example, a scooter rider would not want to ride along a
path that could have otherwise been ridden on a bike [5, 6].
Many jurisdictions disallow scooters from using pedestrian
sidewalks, although sometimes trails are permitted.

Previous work has utilized similar data from ride-share
bicycles, or electric scooters for urban lane planning of
bicycle and scooter lanes [7–10]. However, to the best of
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our knowledge, this is the first work to utilize such data for
autonomous path planning of a micromobility transportation
modality. The technical approach is to use historical ride
data from human-operated scooters to generate a quantitative
method for comparing candidate routes. Substantial prior use
of a particular route segment by human riders is weighted
in the autonomous route planning algorithm, along with
heuristic factors such as the route length and tortuosity.

The primary contribution of this paper is the application
of optimized routing using historical data to generate route
plans for micromobility platforms. A graph-based planning
framework generates edge weights based on the frequency of
prior usage to select routes that are suitable for a micromo-
bility transportation modality. Additional heuristics include
the straight-line distance from the route start to end and
bounding the edge weights to avoid tortuous paths. The
optimization algorithm is implemented using traditional A∗

planning. Simulation results illustrate the framework based
on a two-month dataset from a Veo scooter pilot at the
University of Maryland College Park in October 2019 and
October 2020.

The paper is organized as follows. Section II pro-
vides technical background on our methodology. Section
III presents the design of the algorithm used to learn the
edge weights in the constructed graph. Section IV shows
experimental results generated from using this algorithm.
Finally, Section V summarizes the results and ongoing and
future work.

II. BACKGROUND

A. Microbility Trip Data

The proposed approach requires a historical ride data set
that contains GPS measurements collected along each ride.
To illustrate our results, we used an anonymized data set
from a campus pilot of electric scooters ridden on and around
the University of Maryland College Park campus during
October 2019 and October 2020. The data was collected from
scooters operated by Veo over 14,468 trips. GPS coordinates
of the scooter were logged every 6-8 seconds while each ride
was in progress.

B. Path Planning Algorithms

The path planning algorithms discussed in this paper
include Dijkstra’s algorithm and the A∗ algorithm. Dijkstra’s
algorithm is a greedy search algorithm that produces single-
source shortest paths in a graph with nonnegative edge
weights. It works by incrementally discovering lower cost
paths to a target vertex. A∗ is a path planning algorithm
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that is an extension of Dijkstra’s algorithm. It incorporates a
heuristic estimate in order to reduce the number of explored
states by incorporating the cost to get to the goal from a
given state. Whereas Dijkstra’s algorithm sorts vertices to
explore by C∗(x′), where C∗ is the optimal cost to reach
vertex x′ by traversing edges on the graph, A∗ sorts vertices
to explore by C∗(x′)+Ĝ∗(x′) where Ĝ∗ is the heuristic cost
to reach the goal from vertex x′ [11]. A∗ is guaranteed to
find the optimal route from the start to the goal vertex as
long as Ĝ∗(x′) is an underestimate [12]. A commonly used
heuristic is the straight-line distance from some vertex to the
goal vertex. This heuristic is admissible because this length
ignores obstacles that an agent moving along the path will
inevitably encounter, causing it to be an underestimate [11].

C. Hexagonal Grid System

To form a spatial histogram of our ride database, we used
Uber H3, a Hexagonal Hierarchical Spatial Index [13]. Uber
H3 was used in order to cluster scooter GPS coordinates
into cells on a map. This step is necessary to get meaningful
frequency estimates along historical routes with appropriate
resolution. H3 is the index system Uber uses to optimize
ride pricing in different localities by analyzing geographic
information localized to different hexes. Uber H3 works by
dividing the surface of the Earth into hexagons, providing
regions to analyze of varying sizes depending on the sizes of
the hexagons used [13]. The advantage of using a hexagonal
grid system rather than a conventional rectangular grid is
that hexagons avoid many of the distortions that come with
rectangular grid cells. Due to the curvature of the surface
of the Earth, one must account for the slight differences in
length between the two horizontal sides of the rectangle,
which can make route planning more difficult. Hexagons
have the useful property of having a center point that is
equidistant to each corner, even when distorted over the
surface of a spherical object. Another advantage of using H3
is the hierarchical organization, which allows us to adjust
the resolution or size of the grid cells depending on how
many GPS points are available within a given locality. If
the data is more spread apart, it would necessitate using
larger hexagons to localize in order to generate meaningful
frequency estimates.

III. USAGE-BASED EDGE-WEIGHTING ALGORITHM

This section describes the edge-weighting algorithm for
path planning, starting from the construction of a graph that
describes the route network.

A. Graph Construction

The first step is to process and clean the historical ride
data, filtering out erroneous data points that do not fit the
geographic locality of the rest of the data. This processing
involves localizing GPS coordinates within their respective
hexes in the H3 system. It is important to choose a resolution
that does not separate the coordinates too much in order to
attain route frequencies that are useful for the path-planning

algorithm. We construct a graph using these hexes, with ver-
tices in the graph representing the hexes and undirected edges
representing instances of two hexes appearing consecutively
in a given trip. The choice to use undirected edges is to
maximize the frequency discount for edges in the graph,
to allow the algorithm to better choose frequently traveled
edges. This choice was made with the assumption that most
routes will encounter the same obstacles when traveling in
one direction or the other, and thus the optimal ground truth
path would be similar in either direction. By making the
graph undirected, the granularity of the generated waypoints
is maximized.

B. Edge Weighting

Edge weights are initially calculated as the distance be-
tween the center of two consecutive hexes in a trip. A
discount factor is incorporated into the edge weighting in
order to encode which edges were traveled more frequently
in the ride data set. This discount factor is some number
less than 1 that is multiplied by the existing edge weight
whenever an edge is seen more than once in the dataset,
thereby decreasing the weight of that edge. Then, when
the path-planning algorithm is run, the algorithm will favor
more commonly traveled edges because of lower weights.
Generated waypoints fall on routes that human riders have
traveled before. Thus, the algorithm not only favors routes
that take it from the start vertex to the goal vertex, but also
routes that avoid obstacles and other hindrances because
it is likely a large number of human riders avoided the
same obstacles, and this pattern would appear in the data.
The discount factor is chosen after considering the auto-
generated routes to determine the quality of paths produced
with various discount factors. A lower discount factor allows
a path-planning algorithm to more heavily favor frequently
traveled routes, but it also causes edge weights to approach
zero faster. This means that short, high-frequency edges can
dominate other edges that might be more practical for the
scooter to reach its destination. This can produce tortuous
paths that are suboptimal. A higher discount factor avoids
this pitfall but cannot take as much advantage of higher
frequency edges. A useful discount factor must strike a
balance among these considerations.

It is also necessary to bound the edge weights. Due to the
asymptotic nature of an exponential function, the weight of a
higher frequency edge will approach zero as it occurs more
and more times in the dataset. This can cause the edge to
be overly favored in a path-finding algorithm and can result
in large bends in the generated paths as sequences of short
high-frequency edges are chosen over more direct, lower-
frequency edges. Thus weights must be bounded to some
number that allows frequent edges to be favored but not so
much that they dominate more practical edges in a generated
route.

C. Path-planning algorithms

The A∗ algorithm is selected here over Dijkstra’s algo-
rithm because there is an admissible heuristic, namely the
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(a) Dijkstra’s algorithm

(b) A* algorithm

Fig. 1: Comparison of usage-weighted paths produced by
Dijkstra’s algorithm and A∗ on the Uber H3 grid. In this
example, the Dijkstra’s path (724 m) is longer than the
A* path (632 m). The hex gray-scale intensity depicts the
frequency of prior usage by human riders.

straight-line distance from a given vertex to the goal vertex.
This algorithm generates waypoints and routes that are closer
to an optimal straight line to the goal, as shown in Fig. 1.
An additional benefit of using A∗ is this choice allows the
path-planning algorithm to avoid short high-frequency edges
that do not contribute as much towards reaching the final
destination. These vertices, although they might have had
a lower edge weight, have a higher heuristic cost because
they cause movement away from the goal vertex. In addition,
it is necessary to incorporate a discount factor into this
heuristic to ensure the algorithm does not overly prefer long
edges that join some vertex and another vertex much closer
to the goal vertex. We tuned the algorithm to introduce
more granularity into the generated paths and prefer shorter
edges that generate more waypoints suitable for autonomous
navigation.

To define the edge weight, let h(u, g) be the straight-line
distance from vertex u to an ultimate goal vertex g, d the
distance from u to v, we the discount factor on the edge
weights used to indicate the frequency with which each edge
was traveled, f the number of times that edge is seen in the
dataset, wh the weight for the heuristic, and l the lower bound

for the edge weights. The cost C(u, v) to move from vertex
u to vertex v is

C(u, v) = max((we)
f · d(u, v) + wh · h(u, g), l).

IV. RESULTS

Fig. 2 illustrates the frequency of prior usage by human
riders of electric scooters on the University of Maryland
campus. This is useful in depicting how human riders travel
around the campus and where, consequently, an autonomous
scooter might travel as well. This graph was constructed
using a resolution of 13 for the hexes, which gives each
cell an edge length of 3.55 m. Through experimentation,
this resolution was found to be optimal due to the amount
of data present in each hex at that resolution, as well as the
ability of the scooter to maneuver around obstacles within
such distances.

Fig. 2: The density of micromobility travel around the
University of Maryland campus. Some of the most frequently
traveled edges are shown, with brighter edges representing
more frequently travelled paths and the black hexes repre-
senting all recorded GPS locations localized to hexes.

The proposed edge-weighting approach often finds routes
that are more practical than those offered by existing meth-
ods. As an example, Fig. 3 shows two selected points
on campus that are on several frequently traveled routes.
The best option available to emulate scooter travel on a
platform like Google Maps is through the bicycle modality.
However, Google Maps fails to avoid obstacles that might
hinder a human scooter rider or autonomous scooter, such
as staircases. Note that in the following figures, blue hexes
indicate the start and end of each route while red hexes
represent waypoints generated along that route. Hexes that
are colored differently from the aforementioned colors are
not part of the route but indicate the degree of the vertex
at that hex, with darker hexes representing higher degree
vertices and vice versa.
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(a) Proposed route

(b) Google Maps route

(c) Stairs on Google Maps route

Fig. 3: This figure shows the Google Maps route [14]
generated between two points, illustrating the obstacles one
could run into using current available algorithms

Figs. 4 and 5 illustrate the effect of the various parameters
used by the algorithm. Through experimentation, it was
found that a discount factor of 0.9 was useful in generating
practical paths for the autonomous scooter. This was the
lowest weight at which observed results were not overly
convoluted in that they did not contain the types of hairpin
u-turns demonstrated in Fig. 4(a).

Fig. 4 shows the usefulness of using a lower bound for the
edge weights. Without the bound, the algorithm generates a
path with a large diversion in the middle to target several
high frequency edges rather than a more direct edge from
vertex 9 to vertex 13 in Fig. 4(a). Through experimentation,

(a) A sample route generatd without bounding the edge weights

(b) The same route with bounded edge weights

Fig. 4: Comparison of route plans with and without bounded
edge weights. Bounding the edge weights avoid tortuous
paths

a useful lower bound was
√
3a − ϵ where a represents the

length of one side of a hexagon, meaning
√
3a is the distance

from the center of one hexagon to the center of a hexagon
bordering it. This is the closest two generated waypoints can
be, and some small ϵ was chosen in order to allow edges
between two adjacent hexagons that have been seen more
than once in the dataset to decrease slightly. So the edge that
has been seen more than once is then favored over another
less traversed edge.

Fig. 5 demonstrates the need for weighting the heuristic.
Through experimental results, a useful weight was 0.75.
A lower weight produces paths more similar to Dijkstra’s
algorithm, whereas higher weights produce more dispersed
waypoints that would not be practical for an autonomous
scooter to use to navigate.

V. CONCLUSION

This paper introduces an algorithm to learn edge weights
in a graph constructed from historical data of micromobility
trips. GPS coordinates from historical data are localized
using a hexagonal grid system to estimate the frequencey
of usage of each route segment. A parameterized approach
to edge-weighted planning is added to conventional planning
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(a) The algorithm without weighting the heuristic

(b) The algorithm with a weighted heuristic

Fig. 5: Comparison of route plans with and without weight-
ing the heuristic. Weighting the heuristic appropriately gen-
erates waypoints more suitable for route following.

algorithms to generate routes that are practically useful for an
autonomous scooter to travel. A discount factor is necessary
to encode information about the frequency with which an
edge was traveled, and a weighted heuristic produces routes
that are straighter while still avoiding obstacles. Including
a lower bound on the edge weight avoids overly winding
paths. This approach, in conjunction with other onboard
systems, would help a scooter navigate autonomously in
environments where there is access to large quantities of
historical data. This approach is useful for global path
planning for autonomous scooters, as well as for manually
operated micromobility systems.
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